sqla-filters-yaml Documentation
Release 0.0.1

Marc-Aurele Coste

May 12, 2020

Contents:

1 YAML Parser 3
2 Usage 5

3 Indices and tables 7

sqla-filters-yaml Documentation, Release 0.0.1

Warning: This project is not ready for production so use it carefully because it’s not stable.

Contents: 1

https://pypi.org/project/sqla-filters-yaml/
https://pypi.org/project/sqla-filters-yaml/
https://pypi.org/project/sqla-filters-yaml/
https://pypi.org/project/sqla-filters-yaml/
https://discord.gg/eQ4Mtc8

sqla-filters-yaml Documentation, Release 0.0.1

2 Contents:

CHAPTER 1

YAML Parser

This parser is used to create a filters tree using a yaml file.

sqla-filters-yaml Documentation, Release 0.0.1

4 Chapter 1. YAML Parser

CHAPTER 2

Usage

For the example we will take a simple entity like the following:

class Post (Base) :
p_id = sa.Column(sa.Integer, primary_key=True)
title sa.Column (sa.String (100))
content = sa.Column (sa.String)

def _ str_ (self):
return '{} | {}'.format (self.title, self.content)

and your YAML looks like:

type: or
data:
- type: operator
data:
attribute: title
operator: eg
value: Post_01
- type: operator
data:
attribute: title
operator: eqg
value: Post_03

you can now use sqla-filter to filter your query and get only post with title equal to ‘Post_01’ or ‘Post_02’.

Create a YAML parser instance
parser = YAMLFiltersParser (raw_yaml_string)

A tree is generated with the YAML received.
If you set the YAML the tree is automatically updated.
print (parser.tree)

(continues on next page)

sqla-filters-yaml Documentation, Release 0.0.1

(continued from previous page)

Now you can filter a query
query = session.query (Post)
filtered_query = parser.tree.filter (query)

Get the results

you can also directly call the “all ()’ from previous step
results = filtered _query = parser.tree.filter (query).all ()
results = query.all()

6 Chapter 2. Usage

CHAPTER 3

Indices and tables

* genindex
* modindex

e search

	YAML Parser
	Usage
	Indices and tables

