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Warning: This project is not ready for production so use it carefully because it’s not stable.
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CHAPTER 1

YAML Parser

This parser is used to create a filters tree using a yaml file.
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CHAPTER 2

Usage

For the example we will take a simple entity like the following:

class Post (Base) :
p_id = sa.Column(sa.Integer, primary_key=True)
title sa.Column (sa.String (100))
content = sa.Column (sa.String)

def _ str_ (self):
return '{} | {}'.format (self.title, self.content)

and your YAML looks like:

type: or
data:
- type: operator
data:
attribute: title
operator: eg
value: Post_01
- type: operator
data:
attribute: title
operator: eqg
value: Post_03

you can now use sqla-filter to filter your query and get only post with title equal to ‘Post_01’ or ‘Post_02’.

# Create a YAML parser instance
parser = YAMLFiltersParser (raw_yaml_string)

# A tree is generated with the YAML received.
# If you set the YAML the tree is automatically updated.
print (parser.tree)

(continues on next page)




sqla-filters-yaml Documentation, Release 0.0.1

(continued from previous page)

# Now you can filter a query
query = session.query (Post)
filtered_query = parser.tree.filter (query)

# Get the results

# you can also directly call the “all ()’ from previous step
# results = filtered _query = parser.tree.filter (query).all ()
results = query.all()
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CHAPTER 3

Indices and tables

* genindex
* modindex

e search
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